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The orientations of fibres in a semi-dilute, index-of-refraction-matched suspension in 
a Newtonian fluid were observed in a cylindrical Couette device. Even at the highest 
concentration (nL3 = 45), the particles rotated around the vorticity axis, spending 
most of their time nearly aligned in the flow direction as they would do in a Jeffery 
orbit. The measured orbit-constant distributions were quite different from the dilute 
orbit-constant distributions measured by Anczurowski & Mason (1967 b )  and were 
described well by an anisotropic, weak rotary diffusion. The measured #-distributions 
were found to be similar to Jeffery’s solution. Here, # is the meridian angle in the 
flow-gradient plane. The shear viscosities measured by Bibbo (1987) compared well 
with the values predicted by Shaqfeh & Fredrickson’s theory (1990) using moments 
of the orientation distribution measured here. 

1. Introduction 
The orientation of fibres in simple shear flow plays an important role in 

determining the rheological properties of a suspension and the properties of 
composite materials produced by various forming operations. In the theoretical 
literature on fibre suspensions, the prediction of the suspension properties 
corresponding to a given suspension structure is better understood than the factors 
that control the structure itself. Thus, the goal of our investigation is to provide 
experimental evidence concerning the dynamic processes controlling fibre orientation 
in the simple shear flow of a semi-dilute suspension in a Newtonian fluid. A semi- 
dilute suspension is defined as one in which nL3 + 1 and nL2d << 1, where n is the 
number of fibres per unit volume, L is the fibre length and d its diameter. For 
nL3 + 1,  there are many particles interacting with any given fibre in the suspension a t  
any point in time. The concentrations used in this study range from nL3 of 1 .O to 45 for 
particle aspect ratios of 16.9 and 31.9, with the highest values of nL2d being about 
1.5. 

Theoretical predictions are available for the stress in dilute and semi-dilute 
suspensions of non-Brownian high-aspect-ratio fibres with a known orientation 
distribution. These predictions are of the form (Batchelor 1971) 

where p is a unit vector parallel to the fibre axis of symmetry, E is the-rate-of-strain 
tensor, 6 is the unit tensor, p is the viscosity of the suspending fluid, ,ufibre is a 
function of concentration, orientation distribution, and fibre geometry, and the angle 
brackets represent an average over the orientation distribution of the fibres. This 
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t 

FIQURE 1.  Definition of the spherical coordinate system for a fibre centred at the origin and 
subjected to an 2, y simple shear. 

prediction is valid provided that the fibre interactions are purely hydrodynamic and 
there is no fibre-fibre contact. 

The expression for plibre in the dilute limit was found by Batchelor (1971) to be 

where E = [In (2rP)]-l and rp is the aspect ratio of the particle (length/diameter). For 
particles considered to be infinitely long and thin f ( ~ )  = 1, whereas the correction to 
0 ( e 2 )  that accounts for the effects of finite aspect ratio is (Batchelor 1971) 

Shaqfeh & Fredrickson (1990) have summed the particle interactions in the semi- 
dilute regime for long thin particles and shown that (1.1) is still applicable but pLtibre 
is given by 

m L 3 p  
= 3[ln(l/c)+ln (ln(l/c))+A]’ 

where c is the volume fraction of fibres, and A = -0.66 for a suspension in which all 
orientations are equally probable and A = 0.16 when all of the particles are aligned 
in a common direction. Corrections for (1.4) have not been developed to O ( E )  or 0 ( c 2 ) .  

In order to use (1.1) for suspension rheology and comparable expressions for 
conduction (Shaqfeh 1988) and mechanical properties (Cates & Edwards 1984), one 
must know certain moments of the fibre orientation distribution. Theoretical 
predictions for the orientation distribution in the simple shear flow of a suspension 
of non-Brownian fibres are not yet available. 

In 1922, Jeffery determined the motion of a single ellipsoidal particle in the Stokes 
flow of a Newtonian fluid. Bretherton (1962) showed that the same equations could 
be used to describe the motion of any axisymmetric particle provided that one used 
an effective aspect ratio re that is equal to  the actual aspect ratio rP for ellipsoidal 
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X Y 
FIQURE 2. Jeffery orbits for re = 22.3 and various orbit constants for a simple shear 

in the (z, y)-plane. 

particles, but must be determined experimentally for other particle shapes. The 
spherical coordinate system used to describe fibre orientation is defined in figure 1. 
The differential equations governing the time evolution of 8 and $ are 

where is the shear rate. Integration of (1.5) and (1.6) yields 

tan$ = retan?++.), 

where C and K are parameters known as the orbit constant and phase angle and 
T = 27r(re + rL1)/y  is the period of rotation of the fibre. 

The motions described by (1.7) and (1.8) are illustrated in figure 2. If the fibre is 
centred at the origin in the figure, the end of the fibre sweeps out one of the orbits 
illustrated on the surface of the unit sphere. Each fibre rotates in a closed orbit 
parameterized by an orbit constant C that does not change for a fibre in a low- 
Reynolds-number flow of a Newtonian fluid unless effects such as inertia, Brownian 
forces, or fibre interactions take place. Equations (1.7) and (1.8) indicate that, for 
C = O( i ) ,  the fibre spends a long time, of O(r,Jj ) ,  aligned in the (z, 2)-plane and then 
quickly flips in an O( l / j )  time through the rest of its orbit. On the other hand, fibres 
with an orbit constant of 0(l/re) wobble around the z-axis and never have a large 
component of their orientation in the y-direction. The tendency of fibres to spend 
most of the time near the (z, 2)-plane has important rheological consequences. From 
(l . l) ,  it can be seen that most arbitrarily chosen orientation distributions would 
produce an enhancement of the viscosity of O(enL3p). However, only a fibre with an 
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0 ( 1 )  projection in the y-direction makes a large contribution to the shear stress, so 
the fibre contribution to the shear viscosity with orientation behaviour consistent 
with Jeffery’s solution is actually only O(enL2d,u). 

Recently, progress has been made in describing the orientational dispersion caused 
by hydrodynamic interparticle interactions in two flow situations : the flow of freely 
suspended axisymmetric particles through a fixed bed of fibres or spheres (Shaqfeh 
& Koch 1988) and extensional flows of high-aspect-ratio particles in the dilute and 
semi-dilute regimes (Shaqfeh & Koch 1990). A comparable theory is not yet available 
for simple shear flow, but it is a subject of current research. 

Anczurowski & Mason (1967 b )  observed fibre orientation in dilute suspensions of 
cylindrical fibres with rp  = 18.4 and nL3 = 0.016, 0.066, and 0.26. For sufficiently 
small concentrations, the fibres would be expected to follow Jeffery orbits most of the 
time. The investigators determined the steady-state orbit-constant distribution in a 
Couette flow. The distributions were indistinguishable for the two lower con- 
centrations, suggesting that these concentrations were in the dilute regime in which 
three-fibre interactions are rare. The fibres showed a pronounced shift towards low 
orbit constants relative to the orientation distribution that would arise if an initially 
isotropic suspension was sheared and the fibres remained in their initial orbit. We 
shall refer to the latter as the isotropic orbit distribution (Anczurowski & Mason 
1967a). At the higher concentration, nL3 = 0.26, the orbit distribution was shifted to 
higher orbit constants, 

From the foregoing discussion, we can identify a number of important questions 
to be addressed by our experimental investigation. (i) Are the interactions in the 
semi-dilute regime strong enough to cause large deviations from Jeffery’s rotation 
rate? (ii) Do the interactions cause fibres to flip more frequently, thereby increasing 
their projection in the gradient direction and their contribution to the stress ? (iii) Is 
there any evidence for fibre-fibre contact in the semi-dilute regime? (iv) Does 
orientational diffusion serve as a useful model for the effects of fibre interactions ? (v) 
Assuming that the fibres follow approximate Jeffery orbits, what is the distribution 
among the orbits ? 

To address these questions, we shall present measurements of the steady-state 
orientation distribution as well as some evidence of the transient changes in 
orientation in an index-or-refraction-matched, semi-dilute fibre suspension. Section 
2 gives a brief description of the experimental apparatus and the fibre suspension. In 
53.1 we present the results for the orbit-constant distribution, which is compared to 
an orientational diffusion model in 53.2. In $3.3, we examine the distribution for the 
meridian angle $ in the (x,y)-plane. The measured orientation distribution will be 
used together with (1.1) to make predictions for the effective shear viscosity that will 
be compared with the measurements of Bibbo (1987) in $3.4. The dynamics of 
orientation change will be addressed in $3.5. 

2. Particle visualization apparatus 
Anczurowski & Mason (1967 b)  sheared a suspension of cylindrical fibres with an 

aspect ratio rP = 18.4 and concentrations, nL3 = 0.016, 0.066, and 0.26 in a Couette 
device and measured the orbit constants of the suspended fibres in order to  determine 
the orbit-constant distribution, p (  C). They used a particle-average method to 
calculate p(C)  by determining the orbit constant of about 500 different particles in 
a suspension undergoing shear. Both steady-state and transient C-distribution 
functions (Anczurowski, Cox & Mason 1967) were evaluated. Since relatively low 
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concentrations of fibres were utilized, opaque particles could be used without 
obscuring the particle being observed. The (2, 2)-projection of the particles was 
observed and the maximum value of the angle 0, defined in figure 1, was determined 
from photographs. The value of the orbit constant was then determined from (1.7). 
Unfortunately the value of the orbit constant is quite sensitive to the maximum 
value of 0 for re B 1 and C > l/re, as can be seen from figure 2; therefore this method 
is not applicable to very large aspect ratios. 

We also used a Couette device to generate a nearly simple shear flow. However, in 
order to investigate much more concentrated suspensions (nL3 = 1 . M 5 )  it was 
necessary to develop a system of non-sedimenting fibres in which the refractive index 
of the particles was nearly the same as the fluid (an isorefractive system) with a few 
opaque particles, the tracer fibres. A time-averaged distribution function $($, 0) was 
measured by periodically observing the orientation of a tracer particle ( O , $ )  allowing 
sufficient time for particleparticle interactions to occur between observations. The 
ergodic hypothesis implies that the time-averaged distributions and the particle- 
averaged distributions are equivalent if all the particles are assumed to be identical. 
Anczurowski & Mason (1967 b)  demonstrated that the ergodic hypothesis is satisfied 
by fibrous suspensions. 

Folgar & Tucker (1974) reported experiments in which they measured the particle- 
average $-distribution function of a semi-dilute suspension of opaque fibres in a 
Couette device. The angle g5 was directly measured from viewing the projection of the 
particle in the (x,y)-plane. However, the centres of about 80% of the fibres were 
within 1.OL of a wall, which was shown by Stover & Cohen (1990) to be a region 
affected by the presence of the wall. In addition, it is suspected that the viewed 
particles were very close to the top free surface. Without an isorefractive suspension 
it  would not be possible to view a particle from the 2-direction unless it was very close 
(< L )  to the top free surface at the concentrations studied by Folgar & Tucker. 

A three-component fluid would be required to match the density and refractive 
index of an arbitrary material. Some of the constraints on the fluid components 
considered for this experiment are: high viscosity, so that a low Reynolds number 
can be attained ; Newtonian behaviour ; should not permeate polymethylmeth- 
acrylate (outer cylinder material) or the fibre material; low vapour pressure, so 
that the fluid composition remains constant ; low toxicity. While three components 
are required in general, it was discovered that a two-component mixture of glycerine 
and polyethylene glycol (PEG) with a molecular weight of 600 (Union Carbide, 
Danbury, CT) could be used to match the density and nearly match the refractive 
index of cellulose acetate propionate, CAP (Tenite 357, Eastman Kodak Company, 
Rochester, NY). This material is not made into fibres on a commercial scale, but we 
found that CAP fibres of sufficient quality could be made in the laboratory. A 
mixture of glycerine (75.2 wt 'YO) and PEG (24.8 wt 'YO) at 25 "C matched the density 
of the CAP fibres (given as 1.222 g/cms) and had approximately the same refractive 
index as the fibres. The refractive index of the fluid was 1.4700 as measured with an 
Abbe refractometer while that of CAP was given as 1.4705. The shear viscosity of the 
fluid was measured with a Haake viscometer to be approximately 10 P. 

CAP in pellet form was melted and extruded through a circular die using a 
capillary rheometer (Sieglaff-Mckelvey, Philadelphia, Pennsylvania) on constant- 
velocity mode, and the continuous strand of fibre produced was collected onto a spool 
rotating at a constant speed. The resulting spool of fibre was cut into equal lengths 
by using a device that we designed and built especially for this purpose. A length of 
fibre was wrapped around an aluminium plate so that the fibres did not overlap. A 
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FIQIJRE 3. Schematic of the Couette device. 

special fixture holding 50 parallel and equally spaced blades was used to cut the fibres 
by using a hydraulic press to push the blades and base together. In this way, several 
thousand fibres could be cut at a time. Two sizes were produced for the experiments : 
for the high-aspect-ratio fibres, L = 2.68 mm, d = 84 pm, and rp = 31.9 with a 
standard deviation for rp of 2.73; for the low-aspect-ratio fibres, L = 1.61 mm, d = 
95 pm, and rp = 16.9 with a standard deviation of 2.78. Measurements of size 
distributions were made under a microscope by constructing histograms of 100 
particles. Tracer fibres with the same density were made by the same method from 
black CAP, also supplied by Kodak. 

Figure 3 shows a schematic of the Couette apparatus constructed for this study. 
The inner radius was ri = 5.472 cm, the outer Couette radius was r,  = 7.222 cm. The 
inner cylinder was held fixed while the outer cylinder rotated a t  a constant rate. Each 
time the tracer fibre passed through the volume that was being viewed by the video 
cameras, two images of the fibre were recorded, superimposed on a timer. 
Observations of the tracer particle were made only when the centre of the fibre was 
more than 2 fibre lengths from interfaces, which was shown by Stover & Cohen (1990) 
to be a region free from wall effects. The Reynolds number based on particle length 
was a t  most 0.003, which was shown by Karnis, Goldsmith & Mason (1966) to be 
sufficiently small that inertia would be unimportant on the timescale of our 
observations. The experiments were performed in a constant-temperature laboratory 
which was kept at 25 "C L- 0.5 "C. 

A moderate value of 4 was chosen for the ratio of the height of the Couette device 
to the gap between the cylinders, in order to minimize the number of fibres that had 
to be produced by hand. For this geometry, a weak secondary flow with an amplitude 
about smaller than the primary cylindrical Couette flow was present. It was 
experimentally determined that the rotation of a fibre about 2L from the top surface 
showed no evidence of shear in the z-direction, indicating that the weak secondary 
flow did not cause a measurable effect on fibre orientation. However, over the long 
time period of several hours, the secondary flow could convect a fibre from a region 
where wall effects were important into the observation region at  the centre of the 
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gap. Since the time over which a fibre’s orientation remains correlated increases with 
decreasing concentration (cf. §3.5), this sets a lower bound of nL3 x 0.5 on the fibre 
concentration for which we could obtain reliable measurements. An attempt to 
decrease the amplitude of the secondary flow by using an inviscid fluid (mercury) at 
the bottom of the suspension to achieve a free-surface boundary condition was 
unsuccessful, because a rigid layer of unknown structure or substance formed at the 
interface between the mercury and PEG/glycerin mixture. 

In order to facilitate the measurement of the orientation of the two recorded fibre 
images, simple image analysis techniques were used. After the experiment was 
completed and many images had been recorded on video tape, a frame grabber (Data 
Translation Corp., Marlboro, MA) was used to digitize a frame of video information 
in which the images of the fibre were in the centre of the screen. Simple routines were 
then used to display this image on a monitor as a still frame. A program was written 
to use a mouse (Microsoft Corp., Redmond, WA) so that lines could be superimposed 
on the image of the fibre. Two lines were drawn, using the mouse, parallel to the 
images of the fibre, and the slopes were calculated and automatically recorded in a 
data file. The time was recorded from the frame and also written into the data file. 
Later, the data in the file were analysed, and the orientation of the particle was 
calculated. Corrections were made to take into account the misalignment of the 
picture frame from the flow coordinates and the distortion of the picture due to 
unequal magnification of the axes. 

3. Results and discussion 
3.1. The orbit-constant distribution 

The average shear rate experienced by the tracer particle, the average time between 
observations (the observation period), and the number of observations made for each 
suspension are shown in table 1, along with other experimental parameters and 
results. The shear rate at  the centre of the fibre was calculated on the basis of the flow 
field generated between the two concentric cylinders of our device, and the radial 
position of the particle was calculated from its average velocity. Stover & Cohen 
(1990) have shown that a parabolic flow field does not affect the orientation dynamics 
of a fibre, and we expect that the small nonlinearity of our flow field will have a 
negligible effect. 

A direct observation of the tracer particle in the semi-dilute suspensions indicated 
that the particle tended to rotate around the vorticity axis, spending a fraction of 
time of about (1 - l / r J  nearly aligned with the (2,z)-plane as it would in a Jeffery 
orbit. However, the period of rotation was not uniform and at times the particles 
rotated for a small time in the opposite direction of the mean rotation. Later it will 
be shown that the quantitative differences in the g5-distribution for Jeffery’s result 
and our observations are rather small. The qualitative observation that fibre rotation 
in a semi-dilute suspension is similar to Jeffery orbits is consistent with the 
theoretical calculation of Koch & Shaqfeh (1990). This calculation showed that 
many-fibre interactions in a semi-dilute suspension cause a small ( < 10 YO) deviation 
of the average rotation rate from Jeffery’s result. 

When representing the orbit-constant distribution, it is advantageous to plot the 
quantity C/(C+ 1) since its value is bound between zero and one. This quantity will 
be referred to as cb. The steady Cb-distribution measured for rp  = 18.4 and nLs = 
0.016 (Anczurowski & Mason 1967b), which was shown to be in the dilute regime, is 
illustrated in figure 4 (a). The symbols represent the experimental measurements, the 
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rP n L 3  

16.9 20 
16.9 10 
16.9 3.0 
16.9 1 .o 
31.9 45 
31.9 18 
31.9 10 
31.9 5.0 

Observa- 
No. of Ave. tion 

observa- shear rate period 4*h,f' 

tions (8-l) (4 <P:P:> Wg.1 
616 0.319 82.8 0.0222 - 1 . 0 0  
599 0.368 79.3 0.0278 -0.0770 

1334 0.459 76.5 0.0249 0.684 
2356 0.471 82.5 0.0275 0.0320 

472 0.472 84.6 0.0115 -0.961 
963 0.478 81.6 0.0115 -1.83 

1177 0.451 76.2 0.0114 -1.41 
1412 0.447 73.7 0.0116 -1.85 

TABLE 1 .  Some experimental parameters 

4&" 
(deg.1 
13.60 
15.39 
13.68 
13.42 

7.59 
7.48 
7.44 
7.05 

DeelD, 
best fit 
value 

2.53 
1.21 
1.37 
1.22 

3.16 
1.38 
2.85 
2.18 

dotted line is the isotropic C,-distribution, and the solid line is the best fit of the data 
by the rotary diffusion model that will be discussed below. Two-body interactions 
have the net effect of producing a C,-distribution that favours low orbit constants 
relative to the isotropic C-distribution. As can be seen in figure 2, these orbits rotate 
around the z-axis but never have a large projection in the gradient direction. 

Figure 4(b) shows the measured C,-distribution for rp  = 31.9 and nL3 = 45 
compared with the isotropic C-distribution and t,he rotary diffusion model. The 
measured C,-distributions for the eight semi-dilute suspensions in our study are all 
qualitatively similar, with higher orbit constants being favoured relative to  the 
dilute C,-distribution. The error bars are 80% confidence intervals and were 
calculated in the following manner. I n  calculating the uncertainty for our 
experiments, i t  was necessary to take account of the temporal correlations in our 
data, because the observation time was shorter than the time over which a fibre's 
orientation became uncorrelated due to fibre interactions. We divided the 
observations into groups of 50, maintaining chronological order, and performed a t- 
test in order to  determine the variation of p(C,) from group to group (Stover 1991). 
In all cases the approximate time over which orientations remained correlated 
(discussed in $3.5) was much smaller than the group size. The error bars estimated 
by this method were found to  be insensitive to the group size. 

3.2. Rotary diffusion model 
The steady orientation-distribution function for fibres in a simple shear flow has not 
yet been determined theoretically. However, in the semi-dilute regime, there is a 
strong indication that fibre-fibre interactions are purely hydrodynamic and that 
changes in orientation due to mechanical contact between fibres are not significant. 
Evans (1975) showed that slender fibres following Jeffery orbits in shear flow do not 
collide regardless of the interparticle separation. This is a result of the nature of the 
Jeffery orbits for large aspect ratios, which describe the motion of a fibre to be similar 
to that of a material line except that  the fibre resists stretching. The combination of 
particle rotation and translation causes particles to  pass by each other without 
making contact. I n  addition, Evans showed that the hydrodynamic interactions 
between a pair of fibres calculated from slender-body theory do not cause fibres to 
collide. Koch & Shaqfeh (1990) solved for the average rotation rate for infinite- 
aspect-ratio particles in the semi-dilute regime. They found that the rotation rate 
was slowed by 10% at most, relative to Jeffery's rotation rate, and there was no 
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FIGURE 4. Differential probability distribution of C, for (a) Anczurowski t Mason’s (19673) data 
for rp = 18.4 and nL3 = 0.016, and ( b )  for our experiments with rp = 31.9 and nL8 = 45. The solid 
line is the best fit to (3.2) with a variable DBe/D++. The dotted line is the isotropic distribution 
function. The error bars are 80 % confidence intervals. 

‘b 

difference from the Jeffery orbit when the fibre was aligned with either the flow 
direction or the velocity gradient. The authors argued that this modest correction 
would not cause particles to collide at a frequency that would dominate the 
hydrodynamic interactions. 

Recent work by Shaqfeh & Koch (1988, 1990) has made theoretical predictions 
concerning the orientational dispersion of fibres caused by hydrodynamic inter- 
actions. Shaqfeh & Koch (1988) found that an effective diffusivity could be used to 
describe the effects of hydrodynamic interactions on the orientation of axisymmetric 
particles flowing through a fixed bed. However, it was necessary to take account of 
the dependence of the diffusivity on fibre orientation and the associated orientational 
drift velocity, in order to predict the orientation distribution. The resulting 
theoretical predictions were confirmed by the experiments of Frattini et al. (1991). 

10.2 
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Shaqfeh & Koch (1990) found that the orientational dispersion caused by fibre 
interactions in extensional flow was non-local, but the authors were nonetheless able 
to make predictions concerning moments of the orientation distribution. 

From the aforementioned studies, it is clear that the concept of a hydro- 
dynamically induced rotary diffusion is useful in describing hydrodynamic 
interactions. However, the theoretical description may be complicated by the 
dependence of the diffusivity on fibre orientation, orientational drift, and non-local 
effects. In the absence of a theory for orientational dispersion in simple shear flows, 
we will adopt the simplest diffusive model for the interactions that can describe the 
orbit distribution. 

The rotary diffusion problem is posed in terms of the probability distribution 
function, $($, 0). Burgers (1938) derived the general equation governing the time 
variations of $($, 0). Presented in terms of a tensorial rotary diffusion, the equation 
is 

where #(#, 0 )  is the angular velocity described by Jeffery’s equations and Dr is the 
rotary diffusivity. 

In  order to develop a solution for a determinate steady-state distribution, Leal & 
Hinch (1971) considered the problem of how a scalar rotary diffusivity (i.e. a rotary 
Brownian motion) determines the C-distribution function for fibres obeying Jeffery’s 
equations in the limit as the rotary diffusivity goes to zero. The solution method 
begins by stipulating that at steady state the net flux of particles across any 
particular orbit is zero. The $-distribution function is unchanged by a weak rotary 
diffusivity since the Jeffery convective term in the $-direction is non-zero. While 
Leal & Hinch’s principal focus was on slightly Brownian fibres, they also compared 
their steady-state C-distributions to Anczurowski & Mason’s ( 1967 b )  experimental 
data for dilute suspensions to see if fibre-fibre interactions for non-Brownian 
particles could be modelled by a rotary diffusivity. The C-distributions differed 
considerably, and they concluded that either infrequent strong interactions were 
important to this problem or distant interactions were described poorly by a rotary 
diffusivity . 

Since the imposed flow field and the resulting orientation distribution function are 
anisotropic, there is no reason to expect that an isotropic diffusivity would be able 
to account for fibre-fibre interactions. Rahnama et al. (1992) have extended Leal & 
Hinch’s solution to account for a weak, anisotropic rotary diffusivity, with different 
diffusivities in the 8- and +directions, D ,  and D,,. For example, D,  is the 
proportionality between gradients of $(q5,0) in the &direction and the flux of 
probability in the &direction. The resulting steady-state orbit-constant distribution, 
in the limit of large aspect ratio, is given by 

Figure 4 shows our experimental data for rp = 31.9 and nL3 = 45 and Anczurowski 
& Mason’s (1967 b )  dilute experiments compared to Rahnama et aZ.’s (1992) theory for 
the value of D,/D which gives a best fit. The agreement is quite good, with the 
theoretical curve lying within the error bars for figure 4 ( b ) .  Note especially the 
comparison in figure 4 (a )  for the dilute limit, with D,/D,, = 16.23, in which the peak 

+t 
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nLa 
FIQURE 5. Values of D,/D, found by a best fit of the anisotropic, weak rotary diffusion model: 
A, Anczurowski & Mason’s (1967b) data for rp = 18.4; A, for rp = 16.9; and 0,  for rp = 31.9. 

$10 
FIQURE 6. The experimental $-distribution for rp = 16.9 and nLs = 20 (O), and Jeffery’s result 

for a particle with the same re = O.7rp (-). 

and spread of this dilute experiment are described very well by this one-parameter 
fit. All of the other experimental data obtained were fit by this anisotropic, weak 
rotary diffusion model equally well. 

Figure 5 shows a plot of the best-fit value of D,/D,, compared to nL3 for our 
experiments and Anczurowski & Mason’s (1967 b) data. The best-fit values of D,/D,, 
are shown in table 1. The low-aspect-ratio particles (rp = 16.9 for our experiments 
and rp = 18.4 for Anczurowski & Mason’s) show a plateau at about Dm/DH = 17 for 
the two lowest concentrations, the apparent dilute regime. This is followed by a steep 
drop to another plateau, at about Dee/D,, = 1.5, in the semi-dilute regime. The 
higher-aspect-ratio particles also show a semi-dilute plateau with D,/D,, around 
1.5. A comparison of figure 4 ( b )  including the error bars with similar plots for the 
other experiments showed little or no statistical significance for the variations of 
Dee/D,, with nL3 and rp in the semi-dilute regime. 
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FIQURE I. As figure 6 but for rP = 31.9 and nL3 = 45. 

3.3. The $-distribution function 

The measured $-distribution functions for the suspensions with rp = 16.9 and 
nL3 = 10, and with rp = 31.9 and nL3 = 45 are shown in figures 6 and 7, respectively. 
The symbols represent the experimental data and the line is Jeffery's result with 
re = 0.7rp, which is the relationship between re and rp originally found by Trevelyan & 
Mason (1951) for cylindrical fibres with aspect ratios in this range. None of the 
measured $-distributions differ greatly from Jeffery's solution, with only a small 
amount of spreading or shifting of the distribution being evident. 

It can be shown that, if all particle-particle interactions are hydrodynamic, the $- 
distribution must be symmetric about the flow direction ($ = in). The argument 
follows from the form of the N-particle Smoluchowski equation and is similar to that 
given by Koch (1989) for the pair probability in a suspension of spheres. The 
Smoluchowski equation is 

where P(R,  . . . R,;p,  . . . p N )  is the probability of a certain configuration, U, is the 
velocity of the ith particle, pi  is the orientation of the ith particle, and R, is the 
position of the ith particle. The quantities U, and pi are linear in y so that P is 
unchanged if the flow is reversed. Therefore, the $-distribution must be symmetric 
upon reflection through the (x,z)-plane. 

A finite effective diffusivity would not yield results that are consistent with the 
symmetry noted above; instead it would give a distribution whose peak is shifted 
from the z-direction ($ = in) to a value of $ less than in (Stover 1991). This indicates 
that a complete description of hydrodynamic interactions is more sophisticated than 
the simple anisotropic diffusion model used in $3.2 to fit the orbit-constant 
distribution. Although the anisotropic diffusion model gives a good fit to the data of 
p(C,) ,  it fails to describe P($).  

In  order to quantify the amount of spreading and shifting of the $-distributions, 
we define as the average of ($-in), i.e. the difference between the average value 
of $ and the flow direction, and q5dev as the average of the absolute value of 
($-&-$&,if,), i.e. the average deviation from the average orientation. In figure 8 
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FIGURE 8. The quantities q5dev and q5sh,,, for experiments with four different concentrations for (a )  
rP = 31.9 and ( b )  T, = 16.9: ., the experimental values with the error bars being 80% confidence 
intervals; 0 ,  Jeffery's result for a particle with the same effective aspect ratio. 

values of $dev and for various concentrations and aspect ratios are compared to 
a point representing Jeffery's solution for particles with the same effective aspect 
ratio. The error bars shown are 80% confidence intervals calculated by the method 
described above. 

For rp = 16.9, it appears that there is no significant shifting of the $-distribution, 
but 2" to 3" of spreading of the distribution with no relationship between $dev and 
nL3 being noted. For rp = 31.9, there seems to be no statistically significant 
spreading of the distribution but the distribution peak is shifted by 1' to 2' below 
9 = in. If all of the interactions are hydrodynamic as postulated, there should be no 
shifting of the $-distribution, and the source of its apparent shifting for the high- 
aspect-ratio particles is unknown. For both aspect ratios, there is no systematic 
change in $shift or $dev with concentration. 
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FIQURE 9. Values of ( p : p i )  obtained from experimental data as a function of concentration: 0,  
estimated from Anczurowski 5, Mason’s (1967b) data for rp = 18.4; U, for rp = 16.9; and 0,  for 
rp = 31.9. 

A polydisperse distribution of aspect ratios can affect the $-distribution since the 
angular velocity in the $-direction is a function of re. The $-distribution for a 
distribution of aspect ratios was calculated assuming that the rp-distributions are 
Gaussian with the standard deviations given above. For both aspect ratios, the 
resulting $-distributions were nearly identical to the one calculated assuming a 
monodisperse rp-distribution. Therefore, none of the observed spreading can be 
attributed to the distribution of aspect ratios. 

Folgar & Tucker (1984) used a rotary diffusivity and an infinite-aspect-ratio 
Jeffery rotation rate in the (z, y)-plane to describe their observed P($) distributions. 
Since most of the spread in our P($) distributions can be attributed to the finite 
aspect ratio of the particles, Folgar & Tucker’s procedure would lead to a substantial 
overestimate of the effects of fibre interactions. 

3.4. Rheology of Jibrous suspensions 

When boundary effects are negligible, an effective shear viscosity can be defined 
along with effective normal stress coefficients. The effective viscosity of both the 
dilute and semi-dilute regimes is expected to be the result of a purely hydrodynamic 
stress and can be seen from (1.1) to be a function of the @:pi) component of the 
quadrad (pppp),  where the subscripts 1 and 2 refer to the flow and gradient 
directions, respectively. It is given by 

where pre1 is the relative viscosity, which is the ratio of suspension viscosity to the 
continuous-phase viscosity, and ,upibre is determined by (1.2) for the dilute limit and 
by (1.4) for the semi-dilute limit. In (1.4) we are using the fully aligned option which 
should be fairly accurate since the deviation of fibre orientation from the flow 
direction is small, like O( l /re).  The observation that particles execute approximate 
Jeffery orbits in the semi-dilute regime supports the hypothesis that the stress is 
purely hydrodynamic. 

Figure 9 shows @:pz) as a function of nL3 for our experiments as well as those of 
Anczurowski & Mason (1967b). For the low-aspect-ratio particles (rp = 18.4 for 
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FIGURE 10. The relative viscosity, prel, as a function of nL8, from Bibbo’s (1987) experiments : A, 
rp = 17; and x , T~ = 33; (b)  and (d )  are for the semi-dilute theory for rp = 17 and 33 respectively; 
(a) and (c) are as (b )  and (d) respectively, but using the factor calculated for the effect of finite- 
aspect-ratio particles in the dilute regime. 

Anczurowski & Mason and rP = 16.9 for this work) there is a dilute plateau at about 
( p i p i )  = 0.007 for the two lowest concentrations and a semi-dilute plateau at about 
( p : p i )  = 0.025 with nLs = 0.26 bridging the two regimes. Within these two plateaux 
each data point lies within the error bars of the other points. For the high-aspect- 
ratio particles (rp = 31.9) there is a semi-dilute plateau with all the values of ( p : p [ )  
being within 1 % of 0.0115. The error bars are 80% confidence intervals calculated 
as before. The factor of three increase in ( p i p i )  between the dilute and semi-dilute 
region is almost exclusively due to changes in the C-distribution since the q5- 
distributions are only slightly different from Jeffery’s result. 

Bibbo (1987) has measured the effective viscosity of fibrous suspensions with 
nearly the same rp as those used in this investigation, using a torsion cup, which is 
a parallel-plate rheometer with a wall attached to the outer edge of the lower plate, 
to hold the suspension in place. Care was taken to ensure that the two plates were 
sufficiently separated so as to measure a true effective viscosity. This condition was 
not met by many other studies in the literature. In figure 10, the symbols represent 
the experimental measurements of the continuum shear viscosity by Bibbo (1987) for 
rp = 17 and 33. Experiments conducted by Ganani & Powell (1986) also measured 
the true effective viscosity using particles where rp = 24.3. Their data fall 
approximately midway between the two experimental curves shown here. 

Curves ( b )  and (d )  on figure 10 show the theoretical predictions obtained from (1.4), 
using our measured orientation distribution. This theory does not include the effect 
of finite-aspect-ratio particles and appears to underpredict the effective viscosity by 
a factor of about two. There is no semi-dilute theory available that is correct to O(E) 
or O(e2). In  the dilute regime for particles with rp w 20, the effect of including terms 
that account for the finite-aspect-ratio effects to O(c2) rather than the infinite-aspect- 
ratio theory is to increase the viscosity by a factor of about two, see (1.2) and (1.3). 
This factor calculated for the dilute regime is considered here for the semi-dilute case 
since there is no similar theory for the semi-dilute regime. This concept has already 
been employed with success by Mewis & Metzner (1974) for the study of elongational 
viscosity. The pre1 given by (3.4) for the semi-dilute regime multiplied byf(E) for the 
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dilute regime given by (1.3) gives curves (a) and (c) in figure 10. The comparison to 
the data is reasonably good, underpredicting the data slightly for the low-aspect- 
ratio particles and overpredicting for those of high aspect ratio. Note that the 
enhancement of the effective viscosity is rather modest, because the weakness of the 
interactions gives an O(nL2d) fibre stress which is characteristic of fibres in Jeffery 
orbits. 

From (1.1) i t  can be shown that the effective normal stress differences in the semi- 
dilute regime are given by 

u11-'22 = rUPibrej((p~p2)-(p~PD1)), (3-5) 

u22 -'33 = PPibre *;/((Pi PI) - (Pl PZP;)). (3.6) 

The first and second normal stress differences are predicted to be proportional to y ,  
unlike many polymeric fluids in which the normal stress differences are proportional 
to y2. The three moments appearing in (3.5) and (3.6) are all zero if the orientation- 
distribution function is symmetric with respect to the (x, 2)-plane, which is the case 
in the absence of particle-particle interactions or if particle-particle interactions are 
purely hydrodynamic. Potentially, normal stress differences could be sensitive 
measures of non-symmetric changes in the $-distribution function. These moments 
were calculated from the experimental data. In the cases where they were non-zero, 
mostly for the large-aspect-ratio particles, the predicted normal stress was too small 
to be measured by standard rheological techniques. In fact, Bibbo (1987) found that 
the transient normal stress difference was indeed proportional to y, but that at 
steady state the measured normal force was below the sensitivity of the rheometer. 

3.5. Transient orientation distributions 

Since time-averaged data were collected for our study, the transient orientation 
distribution $($, 8, t)  cannot be calculated. However, by studying the time 
correlation function of an orientation parameter some aspects of the transient 
distribution function can be investigated. During the experiment, the orientation of 
the tracer particle is observed as it passes a fixed point with only the outer cylinder 
rotating. The nth observation is related to the (n- 1)th observation and to a lesser 
degree the (n-2)th. The rate of change of orientation depends on the concentration 
of the suspension since the rate and nature of interactions is a function of nL3. Figure 
11 shows the value of c b  as a function of the number of particle circuits for rp  = 16.9 
and nL3 = 1.0 and 20. For the low-concentration case, C,  is a strong function of its 
previous value, changing by a relatively small amount from one observation to the 
next, while for the high-concentration case the orientation is nearly independent of 
its history. 

The function (Cb(t)Cb(t-7)) is defined as the time correlation function of C,(t) ,  
where 7 is the delay time, t is the time measured during the experiment, and the angle 
brackets denote averages over all available values. For 7 = 0, (C,(t) C b ( t - 7 ) )  = 
(Cb(t)')  and as 7 + co, the orbit constant becomes statistically uncorrelated and 
(Cb(t) Cb(t-7)) = (Cb( t ) )$ .  By analysing the decay of (Cb(t) Cb(t--7)) as a function 
of 7 ,  the temporal stochastic fluctuations of Cb(t) can be explored. For the case of 
fibres suspended in a shear flow, the transient rotary diffusion problem has been 
investigated for a strong rotary diffusivity (Cohen & Leal 1978; Rallison & Leal 
1981 ; Stasiak & Cohen 1983), but the transient weak rotary diffusivity has not been 
studied. Since the fibrefibre interactions observed in this work have been 
successfully modelled with a weak rotary diffusivity, there is thus no theoretical 
prediction to compare with the observed time correlation function. 
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FIQURE 11.  The quantity C, aa a function of the number of particle circuits for (a) nLa = 1.0 
and ( b )  nLa = 20, with rp = 16.9. 

FIQURE 1 The 9 and nL8 = 10 fit 3 an 

Figure 12 shows the time correlation function of Cb(t) for rp = 16.9 and nL3 = 10, 
with 7 measured in the number of particle circuits. The uncertainty in the data for 
this correlation function increases with r ,  since the average is taken over a smaller 
number of orbit-constant products for larger time intervals, owing to the finite 
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FIGURE 13. The correlation time, 7,, versus nL3 for the experiments compared to a best fit, 

j 7 ,  = 270/nL3: 0,  rP = 16.9; and A, rp  = 31.9. 
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16.9 
16.9 
16.9 
16.9 

31.9 
31.9 
31.9 
31.9 

d 3  

20 
10 
3.0 
1 .o 

45 
18 
10 
5.0 

<C,(t)z) 
0.226 
0.263 
0.261 
0.292 

0.205 
0.272 
0.206 
0.232 

<C,(t))2 
0.168 
0.211 
0.207 
0.234 

0.150 
0.214 
0.151 
0.178 

Correlation 
time : 7,y 

12.5 
30.5 
63.3 

12.3 
17.6 
20.2 
34.6 

233 

TABLE 2. Transient orientation parameters 

duration of the experiments. For rP = 16.9 and nL3 = 10, the population size for 7 = 1 
was about 600, while for 7 = 20 the population size was only 300. In the absence 
of any theoretical results for ( C b ( t ) C b ( t - 7 ) )  we fit the data with a simple 
exponential function. The function b +a e-r/7c was fitted to these data, with a and b 
being defined as (Cb(t)2) - ( 1 9 ~ ( t ) ) ~  and (Cb(t))2 respectively, and T~ determined from 
a best fit of the decay. All of the data sets displayed a behaviour that could be 
approximated by a simple exponential decay. The experimental data from the most 
concentrated suspensions were not resolved by as many points in the quickly 
decaying part of the curve, since approximately the same sampling time was used for 
a system with a shorter correlation time. 

The correlation time, 7,, is defined as the time required for the correlation function 
to decay to l /e of its initial value. The values of (cb( t ) ' ) ) ,  (Cb(t))' and the correlation 
time non-dimensionalized by are shown in table 2 ; the correlation time is plotted 
as a function of concentration in figure 13 and compared with A/nL3 using a best 
value of A = 270. The correlation time is a maximum for the lowest concentration 
and a minimum for the highest concentration, which was expected since the 
interaction rate is proportional to concentration. The values of correlation time for 
both aspect ratios fall on the same curve. The concentration dependence suggests 
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that interactions are not strongly screened in simple shear flow. This may be 
contrasted with Shaqfeh & Koch’s (1990) results in extensional flow, which showed 
that interactions were increasingly screened with growing nL3.  

A possible explanation for the correlation time being independent of aspect ratio 
follows. Since the average projection of a fibre in the gradient direction, (lp21), is 
O(l/re), the average amplitude of the velocity disturbance caused by a fibre goes like 
l/re. Thus, the rate of change of the angle 8 caused by interactions would be 
proportional to l/re. The spacing between orbits in the (5, 2)-plane goes like l/re, as 
can be seen from (1.7).  Therefore, the increase in the rate of change of 8, caused by 
interactions, for the lower-aspect-ratio particles may be offset by the greater angular 
distance between the orbits so that the correlation time is not strongly dependent 
on re. 

4. Conclusions 
The complete steady-state orientation-distribution function of fibres suspended in 

a Newtonian fluid subjected to a nearly linear simple shear flow has been measured 
for several concentrations in the semi-dilute regime. A suspension of clear particles 
with the same refractive index as the continuous phase and one opaque tracer fibre 
was sheared in a Couette device, and the orientation of the tracer particle was 
recorded periodically. From the recorded orientations, time-average 4- and C- 
distribution functions were constructed for two different aspect ratios. For the low- 
aspect-ratio particles, rp = 16.9 and nL3 = 20, 10, 3.0, and 1.0; and for the high- 
aspect-ratio ones, rp = 31.9 and nL3 = 45, 18, 10, and 5.0. 

For all the concentrations, the particles rotated around the z-axis and spent a 
fraction of time of about ( l - l / r e )  nearly aligned with the (5,~)-plane. The 4- 
distributions were similar to those predicted from Jeffery’s equations. The measured 
C-distributions were all quite similar to one another and markedly different from the 
dilute C-distributions measured by Anczurowski & Mason (1967 b) .  The dilute 
distributions heavily favour lower orbit constants, while the semi-dilute C- 
distributions were more uniformly distributed. An anisotropic, weak rotary 
diffusivity superimposed on the Jeffery convective motion (Rahnama et al. 1992) was 
shown to describe both the dilute (Anczurowski & Mason 1967 b)  and semi-dilute C- 
distributions with Dee/D,, x 17 in the dilute regime and Des/Dg+ x 1.5 in the semi- 
dilute regime. 

Effective viscosities measured by Bibbo (1987) in the semi-dilute regime were in 
qualitative agreement with those calculated from Shaqfeh & Fredrickson’s ( 1990) 
semi-dilute theory using the value of ( p f p i )  determined in this study. This 
agreement was improved when the factor calculated to describe the effect of finite- 
aspect-ratio particles in the dilute regime was used for the semi-dilute theory. 
Changes in the C-distribution between the dilute and semi-dilute regime have a 
larger influence on the effective viscosity than the small spread of the $-distribution. 
The weakness of the observed effects of fibre interactions and the good comparison 
of Shaqfeh & Fredrickson’s theory with measured shear viscosities suggest that 
fibre-fibre contact is not significant in the semi-dilute regime. The time correlation 
function of C,, (C,(t) Cb( t -7) ) ,  was fit to an exponential decay, and for all of the 
suspensions examined the correlation time, 7c, was independent of aspect ratio and 
approximately proportional to l/(nL3). 
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